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Outline
• Multi-angle/multi-pixel algorithms for 3D cloud 

reconstruction
– Technion approach (3D optical tomography)

• Now with microphysical characterization
– Columbia approach (outer cloud shape only)

• Recent evolution at JPL
– Columbia/GISSàSRON approach (3D optical tomography)

• PhD thesis of Will Martin (adjoint 3D RT-based, pure theory)
• JQSRT paper by Martin, Cairns, and Bal
• Will Smith postdoc at SRON (numerical implementation & demo)
• JQSRT paper by Martin and Hasekamp

• Conclusions/outlooks
– (distributed across approaches)
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LES+SHDOM generated cloud field • 9 View angles:

• Pixel resolution: 20m 

• SHDOM + photon & quantization noise

• Unknown extinction grid:  
(46,656 unknowns)

• 9 view angles: 
±70.5o,±60.0o,±45.6o,±26.1o,0o

• Pixel resolution: 20 m 

Synthetic Data



LES+SHDOM generated cloud field • 9 View angles:

• Pixel resolution: 20m 

• SHDOM + photon & quantization noise

• Unknown extinction grid:  
(46,656 unknowns)

• 9 view angles: 
±70.5o,±60.0o,±45.6o,±26.1o,0o

• Pixel resolution: 20 m 

Errors: 5% on total mass; ±33% on local extinction.

Correlation (R2): 
0.94

Synthetic Data



LES+SHDOM generated cloud field

Synthetic Data

• Unknown extinction grid: 66x111x43 
(315,018 unknowns) 

Errors: 
30% on total mass; 

±70% on local extinction.

Correlation (R2): 0.76



Fine-scale cloud tomography

ê “Formal” solution of 3D RTE

é “Ancillary” integral RTE (solved with SHDOM)

Two-level 
iterative solution



β = argmin
β

y−F(β) 2

F(β) = I[β, J(β)] (formal solution)
J(β) = SHDOM(β) (Picard iteration)
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Iterative multi-angle/multi-pixel algorithm
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Extinction on a 3D grid

Initial guess
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β = argmin
β

y−F(β) 2

βn+1 = argmin
β

y−F(β | Jn ) 2

F(β | Jn ) = I[β, J(βn )] (formal solution)

Iterative multi-angle/multi-pixel algorithm

!"
Extinction on a 3D grid

Initial guess

!

Surrogate function minimization

b0

b0b
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= ✓



AirMSPI Data

• 9 view angles: ±66.0o, ±58.9o, ±47.7o, ±29.0o, and 0o

• Pixel resolution: 10 m 

#. %km×). *km×#. *km

• Extinction grid: 86,688 unknowns (at 60 m resolution)



Radiance Domain Comparison

60 m resolution

SHDOM rendered nadirAirMSPI’s nadir

10 m resolution

• Cloud base at ~1.5 km
• Mean-free-path of ~100 m



… now relax the cloud 
microphysics (re,ve):

denominator of all channels (microphysics), may result in a
less accurate recovery.

5. Microphysical Tomography

We dispose of multispectral phenomenological param-
eters βΛ, fΛ(ω·ω′), gΛ etc. Instead, we parameterize
the medium by its microphysical properties, ν, which are
wavelength-independent. With this parameterization, inver-
sion scales as O(NvoxelsNparams). Direct recovery of ν has
been done in 1D plane-parallel media [40,41,43]. We focus
on cases where m is known (Sec. 9 discusses a possible ex-
tension for unknown m). Tomography then seeks the size
distribution parameters ν(x)=[N(x), re(x), ve(x)] in 3D,
based on multiview projections of the scene [2].

Denote x̃ as voxel index. The microphysical vector at
this voxel is νx̃. Define indicator functions for the voxel’s
spatial support Vx̃ and solid angle Vω̃ as

1x̃(x)=

{

1 if x∈Vx̃

0 else
, 1ω̃(ω)=

{

1 if ω∈Vω̃

0 else
, (30)

respectively. The continuous microphysical and radiance
fields can be interpolated as5

ν(x) =
∑

x̃

νx̃1x̃(x), (31)

IΛ (x,ω) =
∑

x̃,ω̃

IΛ
x̃,ω̃1x̃(x)1ω̃(ω). (32)

Denote Ψ and I(Ψ) as vectors that respectively concate-
nate νx̃ and IΛ

x̃,ω̃ , across all voxels. The forward model
renders I(Ψ), given Ψ. Imaging is sampling of the ra-
diance field at specific locations, directions and spectral
bands. Sampling is modeled by an operator M, resulting
in a modeled vector of measurements ymodel

Ψ
=MI(Ψ). On

the other hand, an actual empirical system measures noisy
data, denoted by y. Using y, the inverse problem seeks to
recover an unknown medium Ψ. Generally, the solution
minimizes a cost function

Ψ̂ = argmin
Ψ

[D(y,ymodel
Ψ ) +R(Ψ)], (33)

where R is a regularization term that expresses prior knowl-
edge about Ψ, while D is a data (fidelity) term. The partic-
ular choice of R and D functionals affects the solution and
the minimization speed. Nevertheless, the core ability to
recover Ψ depends on the forward model.

The field Ψ has continuous-valued variables. Moreover,
rendering ymodel

Ψ
depends continuously and smoothly on Ψ.

Hence, for efficient minimization, the gradient with respect
to Ψ can be exploited. An easily differentiable term is

D(y,ymodel
Ψ ) = ∥y −MI(Ψ)∥22. (34)

5Often, more elaborate interpolation schemes are employed [14].

Then,

∂D

∂Ψ
=2 [MI(Ψ)−y]⊤ M

∂I(Ψ)

∂Ψ
. (35)

Here (·)⊤ denotes transposition. The gradient (35) can en-
able an efficient solution to Eq. (33).

6. Functional Gradients

We express the functional gradients directly on the mi-
crophysical properties vector ν. For a given size distribu-
tion, n(r|ν), Eqs. (22,23) are integrated, yielding an effec-
tive extinction coefficient and scattering function in a voxel

βΛ(ν) = βRayl
Λ +

∫

n(r|ν)σMie
Λ (r|m)dr, (36)

fΛ(µ|ν) = fRayl
Λ (µ) +

∫

n(r|ν)fMie
Λ (µ, r|m)dr. (37)

In the atmosphere, with localized tornadoes as exception,
σRayl
λ and NRayl due to air molecules vary slowly in space

and time. They are mapped over Earth using long estab-
lished systems and are mainly a function of altitude. Three-
dimensional variations to derive are therefore attributed to
variations in ν. The gradients of (36,37) with respect to ν

are thus

∂

∂ν
βΛ(ν) =

∫

∂n(r|ν)

∂ν
σMie
Λ (r|m)dr, (38)

∂

∂ν
fΛ(µ|ν) =

∫

∂n(r|ν)

∂ν
fMie
Λ (µ, r|m)dr. (39)

For a Gamma-distribution (3), the derivatives with respect
to parameters (1,2) are:

∂n(r|ν)

∂N
=Cr(v

−1

e
−3) exp

(

−
r

reve

)

, (40)

∂n(r|ν)

∂re
=
r+2reve−re

r2eve
n(r|ν), (41)

∂n(r|ν)

∂ve
=
ψ( 1

ve
−2)−log r

reve
−1+2ve+rr−1

e

v2e
n(r|ν). (42)

Here ψ=d logΓ(x)/dx is the digamma function. Equations
(40,41,42) are used to compute the integrals of (38,39). We
incorporate these functional gradients (Eqs. 38,39) into the
radiative transfer equations as follows. Define

∂

∂νx̃

TΛ (x1,x2)=−TΛ (x1,x2)

x2
∫

x1

∂βΛ(ν)

∂νx̃

1x̃(s)ds. (43)

Then, using (27,28), the coupled equations describing the
radiance approximate gradient with respect to ν are

∂

∂νx̃

ĪΛ (x,ω) = IBC
Λ (x0,ω)

∂

∂νx̃

TΛ(x,x0) +

x0
∫

x

[

∂J̄Λ(x′,ω)

∂νx̃

TΛ(x,x
′)+J̄Λ(x

′,ω)
∂TΛ(x,x′)

∂νx̃

]

dx′ (44)
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Conclusions/outlook
• Accurate and practical 3D RT-based cloud tomography 

(multi-angle/multi-pixel reconstruction) demonstrated on
– Synthetic data (known truth è rigorous error quantification)

• Large-Eddy Simulation clouds, then Monte Carlo 3D RT
– Real-world data from AirMSPI

• Now: seeking relevant validation data in field campaign collections
• Initialization

– Previously: no cloud!
– Currently: “space carving”
– Next: see “Columbia” approach, and beyond?

• Regularization
– Previously: none!
– Currently: only for microphysical profile
– Next: enforce fractal cloud structure?



Progress at Columbia

G. Bal, J. Chen, and A. B. Davis, Reconstruction of cloud geometry 
from high-resolution multi-angle images, Inverse Problems in 
Imaging (2018, in press).



Problem: 
Retrieve External Cloud Shape

17local outgoing flux global angular distribution model

cos–1(q(f)�n(x))

!!!

Super-simple 
(radiosity-like)
2D RT:

self-shadowing is 
accounted for

f

n
outgoing 
normal

Forward model:

q



Main results
• Analytical “Fréchet” derivatives:

• Insights
– Failure anticipated in 2 situations:

1. h”(x) = 0, i.e., inflexion points (incl. flat surface!)
– fixed by regularization of the cost function

2. H’(q�n) º 0, i.e., Lambertian cloud-leaving radiance

• Numerical experiments
– 3 unknown functions + a few unknown numbers
– Increasing complexity …

δu
δα
, δu
δβ



Numerical 
experiments, 1

a(x)

b(f- .)

Easy case:
• Chandrasekhar H function-

like angular model b(f- .)
• Smooth boundary h(x)
• Uniform emittance a(x)

Data:
9 angles (MISR values)
51 grid points (pixels)

h(x)



Numerical 
experiments, 2

a(x)

b(f- .)

Tougher case:
• Chandrasekhar H function-

like angular model (same)
• More curvy boundary
• Solar-like escaping fluxes

Data:
9 angles (MISR values)
51 grid points (pixels)

h(x)



Numerical 
experiments, 3

a(x)
Problematic case:
• Chandrasekhar H function-

like angular model (same)
• Curvy boundary expressed 

in polar coordinates
• Step function fluxes

Data:
11 angles
201 points

h(x)



Summary/outlook
• Outer cloud shape reconstruction demonstrated
• However, for the moment, the “inverse crime” is 

committed: data is obtained from forward model!
– not even instrument noise was added

• Worse, the boundary is assumed to be smooth: 
hence, derivatives exist!
– Real clouds are fractal-shaped. So, at best, a smooth 

approximation will be delivered at the scale of the 
pixels in the real-world observations.

• Present demo assumes high spatial resolution
– more like an airborne than space-based sensor



Progress at JPL

ROSES Terra-Aqua-Soumi/NPP proposal

Addressing cloud-related climate challenges with LES cloud- process 
models, data from MISR and MODIS, and novel re- construction 
techniques for 3D convective clouds

selected for funding. J

… for using fused MISR/Terra’s multi-angle VIS (red channel, 275 m 
pixels) and MODIS/Terra’s mono-angle SWIR (500 m pixels) to 
extend Technion cloud tomography methodology from airborne to 
space-based sensors.



Targeted “case study” …

Seiz, G., and R. Davies, Reconstruction of cloud geometry from multi-view satellite 
images. Remote Sens. Environ., 100, 143-149 (2006).
Cornet, C., and R. Davies, Use of MISR measurements to study the radiative transfer 
of an isolated convective cloud: Implications for cloud optical thickness retrieval, J. 
Geophys. Res., 113, D04202 (2008).



Error quantification based on LES cloud scenes:



Major challenges going from AirMSPI’s 
fine-scale to coarser MISR+MODIS data:
o Forward modeling

§ Pixels—hence voxels—are much bigger.
• They are opaque: very bad for SHDOM!
• They will have copious sub-pixel variability.

o Inverse problem solution
§ How to inform forward model about the “optically 

deep” zone, not worth computing in great detail?
§ How to harmonize reconstruction with “information 

value” of data?  From there, how to bring the 
computational effort to the appropriate level?

o ROSES/TASNPP proposal says …
§ Implement Monte Carlo or hybrid 3D RT
§ Use some form of data-driven regularizaton
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0.5

1

1.5

2

2.5
MISR pixels and view angles

First, we revisit the outer shape reconstruction 
(“Columbia” approach), for the initial guess.

Represent outer cloud boundary with a polygon, with the 
constraint that the 1st and last point share the same altitude.

z
[k

m
]

x [km]

q



First, we revisit the outer shape reconstruction 
(“Columbia”approach), for the initial guess.

2 3 4 5 6 7

0.5
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2.5
MISR pixels and view angles

Start with convex shapes:

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

cloud & its convex hull

Represent outer cloud boundary with a polygon, with the 
constraint that the 1st and last point share the same altitude.

z
[k

m
]

x [km]

q

↓ facets k = 1,…,5
angles j = 1,…9

pixels i = 1, 37 à



… and upgrade the synthetic data model (that is, 
no more “inverse crime” committed).

Developed a 
custom forward 
2D Monte Carlo 
code for convex 
polygon-shaped 
“clouds:”

* 9 MISR views 
simultaneously, 
via local 
estimation

* Triple Henyey-
Greenstein phase 
function to mimic 
the famous “C1” 

tmax = 33
q0 = 50o

vi
ew

 a
ng

le
 j

pixel i



Use MatLab™’s Optimization Toolbox to fit Monte 
Carlo data with the simple forward radiosity model.

à lsqnonlin “out of the box” on 20 parameter inversion …

with       S weightik ≤ 1, for any pixel i (< at edge) and view j
facetk in viewj

true cloud
(w/ ad hoc 
translation)

initial guess

search 
domain

(multi-angle 
cloud mask)

radiancejk = fj * (max{nk
•wj,r}), j = 1,…,9 (10 parameters)

radj_pixeli =       S weightik * radiancejk
facetk in viewj



Summary/outlook
• Outer cloud shape reconstructed … well enough 

for the present purposes ... and very fast.
• What purposes?

– 1st guess for full 3D tomographic cloud reconstruction
– improvement of near-cloud retrievals affected by clouds

• Aerosols
• Trace gases
• Surface fluxes

• Next?
– 2Dà3D (segments à facets/triangulation)
– non-convex shapes
– apply to MISR “test case”
– write/submit paper to MISR special issue in Remote Sensing


